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developed recently by Lifschitz and Hameiri [21–24]. They
use approximations of WKB type, as in geometric optics,We study the time-dependent behavior of disturbances to inviscid

vortex rings with swirl, using two different approaches. One is a valid for small amplitude, short wavelength disturbances.
linearized stability analysis for short wavelengths, and the other is The predicted growth rates can be compared with numeri-
direct flow simulation by a computational vortex method. We begin cal solutions of the full, time-dependent Euler equations.
with vortex rings which are exact solutions of the Euler equations

We compute solutions of the perturbed problems usingof inviscid, incompressible fluid flow, axisymmetric, and traveling
a three-dimensional vortex method, in which the flow isalong the axis; swirl refers to the component of velocity around the

axis. Exact vortex rings with swirl can be computed reliably using represented by a collection of Lagrangian vortex elements,
a variational method. Quantitative predictions can then be made moving according to their induced velocity. The asymptotic
for the maximum growth rates of localized instabilities of small analysis and the numerical solution are two very different
amplitude, using asymptotic analysis as in geometric optics. The

means for describing the dynamics of the perturbed ring;predicted growth rates are compared with numerical solutions of
the comparison of results serves to check the realm ofthe full, time-dependent Euler equations, starting with a small distur-

bance in an exact ring. These solutions are computed by a Lagran- validity of each approach. In addition, the time-dependent
gian method, in which the three-dimensional flow is represented by simulation of numerically exact solutions of the Euler
a collection of vortex elements, moving according to their induced equations provides a test for the quantitative performance
velocity. The computed growth rates are typically found to be about

of the vortex method.half of the predicted maximum, and the dependence on location
Vortex rings are the primary class of steady, inviscid,and ring parameters qualitatively matches the predictions. The com-

parison of these two very different methods for estimating the three-dimensional fluid flow with vorticity of limited ex-
growth of instabilities serves to check the realm of validity of each tent. The study of instabilities in vortex tubes and rings can
approach. Q 1996 Academic Press, Inc. be viewed as one route toward the further understanding of

inviscid dynamics in fully developed flow. The motion of
vortex rings has been studied extensively; see [2, 33] for1. INTRODUCTION
basic descriptions and [34] for a recent survey. In particular,
analysis of linear disturbances to thin rings has explainedIn this paper we study the time-dependent behavior of
azimuthal instabilities [25, 32, 39, 40]. Recent numericaldisturbances to inviscid vortex rings with swirl, using two
computations [18] of vortex rings without swirl, using vor-different methods. One approach is a linearized stability
tex methods, have compared well with this analysis. Otheranalysis for short wavelengths. The other is a direct time-
computations of instabilities, using a difference methoddependent simulation using a computational vortex
for viscous flow, are presented in [35]. Also closely relatedmethod. The vortex rings of interest are exact solutions of
is a numerical study of axisymmetric jets [26, 27], usingthe Euler equations of inviscid, incompressible fluid flow.
vortex methods, showing development of ring-like struc-They are unchanged in time, except for propagation along
tures. However, most theory for vortex rings has dealt withan axis, and symmetric about the axis; swirl refers to the
perturbations in thin rings without swirl. Here, in contrast,component of velocity around the axis. Vorticity is con-
we focus on localized disturbances in exact rings with sig-fined to a toroidal region. Vortex rings with swirl can be
nificant structure inside the core, and with a general veloc-computed numerically using a variational method [11, 12,
ity field including a swirl component. A study similar to this38]. A variety of such rings are found here, using an im-
one was done by Bayly [3], for a class of steady solutions toprovement of the method in [12]. Once a ring has been
the Euler equations which he called quasi-two-dimen-computed, quantitative predictions can be made for the
sional; they are two-dimensional flows with an added thirdgrowth rates of certain instabilities, using a novel theory
velocity component. He compared instabilities predicted
by short-wave asymptotics with numerical solutions found1 Research supported by NSF Grant No. IRI-9224605.

2 Research supported by NSF Grant No. DMS-9102782. via a spectral method.
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INSTABILITY IN VORTEX RINGS WITH SWIRL 9

For axisymmetric flow, the presence of a swirl compo- unperturbed velocity field. The application of this theory
to vortex rings is summarized in Section 3. After a ringnent of velocity has important effects. If there is no swirl,

the fluid motion is restricted to cross sections through the has been computed using the method described above, the
ordinary differential equations for the localized distur-axis, and a scalar vorticity is conserved. In this sense, flow

without swirl resembles two-dimensional flow. Vortex bances are known numerically and can be solved numeri-
cally. Their solution leads to a prediction of growth rates,rings with swirl are thus more representative of general

3D flow than the more familiar rings without. The particle which are defined in a precise way in Section 3, for compari-
son with numerical solutions of the Euler equations.paths in rings without swirl are closed curves within the

cross section; for rings with swirl, they are typically helices. For the computation of time-dependent solutions of the
Euler equations, we use a three-dimensional vortexSeveral existence proofs have been given for exact vortex

rings without swirl, using somewhat different formulations method. Such methods have been used for some time [8,
9, 19, 20]. There are several versions, but all are closely[13, 14]. With or without swirl, the problem can be written

in terms of a stream function for the flow within the cross related; see [17, 31] for recent surveys and [5, 6, 18, 26, 27,
41] for other applications. Here we compute paths of asection. Turkington proved existence of a class of exact

rings with swirl [37]. The choice of ring depends on two collection of representative particles in the fluid and the
values of the vorticity vector at their locations. The velocitydistribution functions for the core and two parameters.

One parameter controls swirl, and connects the familiar of the particles is determined by the Biot–Savart Law, and
the vorticity is stretched by the gradient of velocity. Thecase without swirl to the opposite extreme of so-called

Beltrami flow, in which the velocity and vorticity fields are specific formulation is given in Section 4. This version of
the vortex method was introduced in [1]; it was proved inparallel. The choice of distribution functions can be made

so that the ring is as smooth as desired. Smooth rings [4, 10] that it converges to exact solutions of the Euler
equations. Earlier theory is summarized in [6]. This methodare preferable here for the sake of numerical accuracy. A

different approach to rings with swirl, due to Moffatt [29, is well suited for the computation of disturbances in vortex
rings, since the vorticity remains in a bounded region, and30], is based on the analogy with magnetohydrodynamics.

There are only a few explicit examples of exact solutions, no artificial boundary is needed. The computational ele-
ments follow the transport of vorticity. Several modifica-the best known being the Hill spherical vortex. However,

as a test problem, it has the disadvantage that the vorticity tions of this method are used here, however. When a per-
turbation of a steady flow is computed, it is possible tois discontinuous at the boundary. The Hill vortex is a lim-

iting case of rings without swirl, the opposite of the thin subtract out the underlying exact solution, without intro-
ducing new errors, so that the accumulation of error fromcore limit. It is also the extreme case of a family of explicit

spherical vortices with swirl; see [28]. recomputing it at each time step can be avoided. This
modification is explained in Section 4. To reduce the ex-The existence theorem of Turkington [37] was based on

a variational formulation of the problem. A closely related pense of the summation in the Biot–Savart Law, we use
a fast summation method of the type developed bynumerical method for finding solutions was developed by

Eydeland and Turkington [11, 12, 38]. A constrained varia- Greengard and Rokhlin [15, 16]; the version we use here
is due to Buttke [7]. We also assume fourfold rotationaltional problem is discretized and solved iteratively. Since

the unknowns are functions of only two variables, they can symmetry in order to reduce the computation.
In Section 4 we carry out time-dependent computationsbe computed reliably. The accuracy of the ring obtained

numerically is important for the present study. In [12], a of vortex rings using the vortex method, without introduc-
ing a perturbation. A ring computed as a steady solutiontruncated domain was used, and the artificial boundary

introduces errors. In the present work, the far-field bound- by the variational method is used as an initial state on a
regular mesh. The deviation of the ring at later time fromary condition is imposed more carefully, by exact computa-

tion of the free space solution at the artificial boundary. its initial state is entirely due to the error in computing the
initial ring and the error of the time-dependent numericalThis permits better resolution, since the boundary need

not be far away from the vortex core. The family of rings scheme, interacting with the instabilities of the ring itself.
These calculations are made to build confidence that thestudied here and the numerical method used to compute

them are described in detail in Section 2. computation is not seriously dependent on the mesh size
and that certain of the rings are stable enough that theyLifschitz and Hameiri [21–24] have developed a general

theory of localized instabilities in inviscid fluid flow, using maintain their shape for a reasonable length of time in the
calculation. A similar test with one ring was reported ear-perturbations in a small parameter, representing short

wavelength, as in geometric optics. The disturbance is de- lier in [5]; however, it was not well enough resolved ini-
tially, and it appears to be less stable than other ringsscribed by a system of ordinary differential equations for

the wave vector and amplitude, along particle paths in chosen here. The vortex method computations of these
rings are typically more accurate than the example in [5].the underlying flow, with coefficients depending on the
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Section 4 includes computations with a regridding scheme; the vorticity field is confined to a toroidal region about
the z-axis, the vortex core. Vortex rings are steady solutionsafter a number of time steps, new particles are introduced

on a regular mesh, and the vorticity is redistributed. It is of the Euler equations, except for translation along the z-
axis. The most common physical example of a vortex ringfound that the growth of error can be reduced significantly

in this manner. is a smoke ring. In this paper we are concerned with vortex
rings which have a thick cross section and significant inter-In Section 5 we study the growth of perturbations in

vortex rings using the modified version of the vortex nal structure. Much previous study of vortex rings has used
a model in which the ring is thin, or close to a single vortexmethod described above. We begin with a numerically

exact ring and add a disturbance localized to the core of filament [2, 18, 25, 32–34,39, 40].
The u-component of the velocity is called the swirl veloc-the ring, but which is otherwise not chosen in a special

way. The disturbance is then computed at a later time. ity. The qualitative behavior of the flow is quite different,
depending on whether or not swirl is present. In vortexGrowth rates are obtained for a variety of rings and com-

pared with the predictions from the analytical theory. Sev- rings without swirl, for which the u-component is identi-
cally zero, the particles in the flow are confined to azi-eral different rings are considered. In all cases but one,

the observed growth rates are about Ad to As of the predicted muthal cross sections of the ring. Thus, the particles move
along two-dimensional paths, and the flow has many of themaximum. The observed dependence on location and on

the parameters in the rings generally matches qualitatively characteristics associated with two-dimensional problems.
These rings without swirl have been studied extensivelythat of the predictions. The short-wave asymptotic analysis

neglects interactions between different regions and nonlin- ([13, 14, 35], as well as the above) and there is considerable
information about their behavior and stability characteris-ear effects; the vortex method calculation accounts for

these, but introduces numerical errors. For the two to be tics. Less well known and studied are vortex rings where
the u-component is not identically zero. These rings arein reasonable agreement, both types of errors must be

subordinate to the instability being sought. Further inter- not commonly observed in nature but they do have a more
typically three-dimensional behavior. Particles move inpretation of the results is given in Section 5 and in the Con-

clusions. helices within the vortex core. For these reasons, vortex
rings with swirl may make better test problems for studyingPreliminary versions of these results were reported in

the Ph.D. thesis of Suters [36]. We are especially grateful to the performance of three-dimensional numerical methods.
There has not been much research into understanding theT. Buttke and B. Turkington for their help and suggestions.
behavior and stability of these rings, however. It has even
been suggested that rings with swirl are not commonly2. STEADY VORTEX RINGS WITH SWIRL
observed because they are much less stable than those
without.To evaluate the performance of numerical methods for

solving the Euler equations, as well as to understand the The analysis of vortex rings with swirl can be reduced
to studying a scalar semi-linear elliptic equation for thedevelopment of fully nonlinear effects, it is desirable to

have analytical solutions for direct comparison. In general, Stokes stream function c (see below). The actual form of
the equilibrium equation depends on two arbitrary struc-however, it is extremely difficult to find exact nontrivial

solutions to the Euler equations in free space. In order to ture functions of c. Solving this equation is difficult for
two reasons. First, the location of the free vortex coremake time-dependent numerical simulation feasible, it is

also desirable to have solutions with compactly supported, boundary is not known a priori. Second, the equation has to
be solved in the entire half-space. The equilibrium problemsmooth vorticity. It is in fact possible to find such solutions,

up to reliable computation, by reducing the number of was studied by Turkington [37] via a variational technique.
(Another point of view was given in [29, 30].) It was provenindependent variables. Whereas the full Euler equations

depend on three space variables and time, we seek solu- in [37] that a wide variety of vortex rings with swirl can
be constructed with choices of certain core functions. Fur-tions which reduce to two independent variables. These

special solutions are assumed to be independent of time ther, the method of proof was extended to a numerical
method for generating these rings in [12]; see also [11, 38].except for translation. Furthermore, they are assumed to

be axisymmetric, thereby eliminating one spatial variable. The numerical method in [12] treats the free-boundary
aspect of the problem in an adequate way. However, itThe primary examples of solutions with these special prop-

erties are vortex rings. deals with the boundary conditions at infinity in a less
successful manner by replacing the problem in the entireVortex rings are best represented in cylindrical coordi-

nates (r, u, z), where the z-axis is the axis of symmetry. In space by the problem in a finite computational domain
with a simple choice of boundary conditions. To avoid thethis coordinate system the axisymmetry of the ring implies

that both the velocity and vorticity fields are functions of interference of the boundary with the solution inside the
vortex core, the size of the computational domain and the(r, z). While the velocity field is not compactly supported,
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number of grid points have to be made very large, so v 5 = 3 u 5 2uu
zêy 1 (uy

z 2 Ï2yuz
y) êu 1 (Ï2yuu)yêz.

that an accurate description of the vorticity field becomes
prohibitively expensive. In the present paper we develop a The incompressibility equation (5) implies that there is
different approach to the free-space aspect of the problem. a Stokes stream function c 5 c(y, z) such that
Namely, we introduce a finite computational domain con-
taining the vorticity core and impose nonreflective condi-

u 5 2
1

Ï2y
cz êy 1 uuêu 1 cyêz, (6)tions on its boundary. These conditions guarantee that the

stream function inside the computational domain can be
smoothly matched with the stream function outside this

v 5 2uu
zêy 2

1

Ï2y
Lcêu 1 (Ï2yuu)yêz,domain. This approach allows us to deal with computa-

tional domains just slightly larger than the core and to
resolve the fine features of the vorticity field with very where L is the linear elliptic operator
high accuracy. To be specific, we consider the polynomial
structure functions of c depending an a finite number of

L 5 2y
­2

­y2 1
­2

­z2 . (7)parameters. Our numerical method converges to exact so-
lutions of the Euler equations and generates a multi-pa-
rameter family of rings. This section is devoted to ex-

By manipulating Eqs. (4), (2), (3) we obtain the followingplaining the development of this numerical scheme. The
equations for uu and gu

characteristics of the rings controlled by each of the param-
eters are also discussed.

u ? =(Ï2yuu) 5 0, (8)We regard the vortex rings as special solutions of the
Euler equations of inviscid, incompressible flow

u ? = S 1

Ï2y
guD2

1
2y

((uu)2)z 5 0 (9)
­u
­t

1 u ? =u 5 2=p (1)

and conclude that
= ? u 5 0,

uu 5
1

Ï2y
f(c), gu 5 2Ï2yh9(c) 1

1

Ï2y
f(c)f 9(c). (10)where u is the velocity and p is the pressure. We first write

the Euler equations for time-independent flow in modified
cylindrical coordinates (y, u, z), with y 5 r2/2, and in a

Here f and h are arbitrary functions of c, and f 9 5 df/form which exploits the axisymmetry of the solutions we
dc, h9 5 dh/dc. Physically they represent the circulationwish to find. The equations are
around circles centered at the axis of symmetry and the
Bernoulli head function, respectively. The equilibrium
equation for c can be written asu ? =u y 2

1

Ï2y
(uu)2 5 2Ï2ypy, (2)

Lc 5 2yh9(c) 2 f(c)f 9(c). (11)u ? =uu 1
1

Ï2y
u yuu 5 0, (3)

We impose the following boundary conditions on c (cf.u ? =uz 5 2pz, (4)
[37])

(Ï2yu y)y 1 uz
z 5 0. (5)

c 5 2e on y 5 0, c R 2(e 1 ny) as u(y, z)u R y. (12)
Here

Recall that we are attempting to find a steady solution
u 5 u y(y, z)êy 1 uu(y, z)êu 1 uz(y, z)êz, with compactly supported vorticity which is embedded in

the uniform flow. Suppose that the support of the vorticity
where êy, êu, êz are the orthonormal basis vectors in the cross section is a connected compact subset V of R2

1. It is
cylindrical coordinate system, p 5 p(y, z), and clear that c is constant on the boundary of V, and it will

suffice to consider f and h such that f 5 0, h 5 h0 . 0
u ? = 5 Ï2yu y ­/­y 1 uz ­/­z outside V.

At this stage it is convenient to introduce the adjusted
stream function c̃ 5 c 1 e 1 ny and to rewrite the equilib-because of axisymmetry. The corresponding vorticity can

be written as rium equation and the boundary conditions in the form
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L c̃ 5 2yh9(c̃ 2 e 2 ny) 2 f(c̃ 2 e 2 ny)f 9(c̃ 2 e 2 ny), and the homogeneous boundary conditions (14). The quan-
tities to be determined are the adjusted stream function c̃(13)
and the constants e, n. A proof that a solution to this

c̃ 5 0 on y 5 0 c̃ R 0 as u(y, z)u R y. (14)
problem in the half-plane exists is presented in [37] and
the proof is extended in [12] to produce a convergentThe constants e and n play an important role in the
numerical method for solving the problem (18), (19), (20)definition of c̃. They represent the constant value of c on
in a a finite computational domain R 5 h(y, z)u0 # y # Y,the axis of symmetry and the uniform axial velocity at
2Z # z # Z j with the mixed Dirichlet–Neumann bound-infinity, respectively. It is clear that the adjusted stream
ary conditionsfunction c̃ is associated with the vorticity localized in the

vortex core V. We need two additional conditions to deter-
c̃z(y, 6Z) 5 0, c̃(0, z) 5 0, c̃(Y, z) 5 0. (21)mine the values of e and n. These conditions take the form

of conserved quantities of axisymmetric flows given by
It is assumed that the linear size of the domain R is so
large that the presence of the boundary does not affect

2 E E 1
y

(2yh9 2 ff 9) dy dz 5 C, (15) the solution inside the vorticity core in a noticeable way.
The proof and numerical method are both based on a
variational approach. The authors show that the solutions2 E E (2yh9 2 ff 9) dy dz 5 P. (16)
are extreme points of a modified energy functional and
that such extrema exist; they also provide an iterative ap-In the standard interpretation of these quantities C corre-
proach for finding the extreme points.sponds to meridional circulation and P corresponds to the

In our approach a reduction of the problem in the half-axial component of linear impulse.
space to a problem in a finite computational domain RWe choose the structure functions f and h to be
also plays a prominent role. However, boundary conditions
(21) are replaced by the following nonreflective (and non-f(c) 5 Ï2a/(z 1 1) c(z11)/2

1 , (17)
local) conditions on the boundary of R,

h(c) 5 h0 2
b

2(z 1 1)
c z11

1 ,
c̃(y, 6Z) 5 f(y, 6Z), c̃(0, z) 5 0, c̃(Y, z) 5 f(Y, z),

(22)
where c1 5 max(c, 0), and h0, a, b, z are arbitrary positive
constants. (The value of h0 is irrelevant.) The values of where
the positive conserved quantities C and P can be controlled
by the way in which the problem is nondimensionalized.

f(y, z) 5 2E E G(y, y, z, z)(a 1 by)(c̃ 2 e 2 ny)z
1 dy dz.By stretching the variables and the coefficients according

to the rule (23)

Here G is the Green’s function for the operator L in they R
P
C

y, z R
P1/2

C1/2 z, c R
C3/2z

P1/2z
c,

free space,

a R a, b R
C
P

b, e R
C3/2z

P1/2z
e, n R

C3/2z11

P1/2z11 n,
G(y, y, z, z) 5 2

1
2f

(2y)1/4

(2y)3/4FS2
k

2 kDK(k) 2
2
k

E(k)G, (24)

we can normalize these quantities to unity and assume that
C 5 1 and P 5 1. This normalization guarantees that the where K(k) and E(k) are the complete elliptic integrals of
linear size of the vorticity core is of order unity. the first and second kind of modulus k, and

The equilibrium problem then reduces to the equation

k2 5
4(2y)1/2(2y)1/2

((2y)1/2 1 (2y)1/2)2 1 (z 2 z)2 .
L c̃ 5 2(a 1 by)(c̃ 2 e 2 ny)z

1, (18)

subject to the constraints Thus f represents the exact solution on the computational
boundary of the half-space problem for c̃. These conditions
guarantee that the stream functions inside the computa-E E 1

y
(a 1 by)(c̃ 2 e 2 ny)z

1 dy dz 5 1, (19)
tional domain can be smoothly extended to infinity. This
allows us to consider a much smaller computational do-E E (a 1 by)(c̃ 2 e 2 ny)z

1 dy dz 5 1, (20) main, provided that it contains the vorticity core. This
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is a crucial step towards improving the accuracy of the of this can be seen in [5], where an exceptionally unstable
ring, with z 5 3, was used as a test problem. Setting z 5numerical method.

Following [37, 12] we solve the problem (18), (19), (20), 1.5 seems to be a reasonable compromise. Unless otherwise
noted, this is the value which we will use for z. Using a(22) by iteration. An iteration step can be described as

follows. Suppose that the triple c̃ (n), e(n), n(n) is known. fixed value for z leaves us with a two parameter family of
vortex rings. These parameters are a and b; they controlFirst, we use this triple to compute
the energy and swirl of the ring.

From Eq. (17), setting a 5 0 produces a ring where f isx (n) 5 2(a 1 by)(c̃(n) 2 e(n) 2 n(n)y)z
1 (25)

identically zero. Since f is the modified u-component of
velocity, this produces a ring without swirl. Thus, vortexand to find the corresponding f(n) via the relation
rings without swirl arise as a special case of the method
discussed here. One of their special characteristics is that

f(n) 5 E E Gx (n) dy dz. (26) the velocity and vorticity are perpendicular. On the other
hand, setting b 5 0, produces rings which have parallel
velocity and vorticity. To see this note that if b 5 0 thenSecond, we determine c̃(n11) from the following boundary
Eqs. (6) producevalue problem:

v 5 Ïa(z 1 1)/2 c(z21)/2
1 u.L c̃(n11) 5 x(n) in R; c̃(n11) 5 f(n) on ­R. (27)

Thus, v is u times a function of c1. Flows of this specialFinally, we determine e(n11), n(n11) from the conditions
type are known as Beltrami flows. This extreme case repre-
sents the maximum amount of swirl which can be present

C(e(n11), n(n11)) 5 E E 1
y

(a 1 by)(c̃(n11) 2 e(n11)
in a steady flow.

To illustrate how the method works, we compute the
2 n(n11)y)z

1 dy dz 5 1, (28) stream function c for a Beltrami vortex ring where a 5
50, b 5 0, and z 5 1.5. The values of the stream function

P(e(n11), n(n11)) 5 E E (a 1 by)(c̃(n11) 2 e(n11)
c are obtained on a 300 3 300 grid in the yz-coordinate
system. Figure 1 is a picture of level curves of c in the

2 n(n11)y)z
1 dy dz 5 1. (29) cross section of the vortex ring in question. The ring is

plotted in the yz-coordinate system with z varying from
This part requires solving an implicit system of two alge- 20.8 to 0.8 and y varying from 0.2 to 2.2. The maximum
braic equations with two unknowns e, n. This is done via of c is located at the center of the ring and has the value
Newton’s method. Once the triple c̃(n11), e(n11), n(n11) is 0.10236. The stream function c has the value 0 on the outer
found the iteration step can be repeated until the conver- loop. The intermediate loops are evenly spaced in terms
gence is reached. The iteration procedure is initiated by of c.
choosing a (fairly arbitrary) x(0) satisfying the constraints Once the stream function c has been computed it is
of the form possible to determine the velocity and vorticity fields using

Eqs. (6). Additional information about the structure of the
rings can also be obtained. For example the period for2 E E 1

y
x(0) dy dz 5 1, 2 E E x(0) dy dz 5 1. (30)

each particle to complete a closed path in the azimuthal
cross section of the vortex ring can be determined. This

The method discussed in this section can be used to period is shown in Fig. 2 for the Beltrami ring. This stream
generate vortex rings with a wide variety of characteristics. function data can also be used to predict the instability of
We have three parameters, a, b, and z, at our disposal. vortex rings to perturbations with short wavelengths and
The parameter z is mainly used to control the smoothness small amplitudes. These predictions are the topic of Sec-
of the stream function c on the boundary of V. In general, tion 3.
the stream function c is a C z12 function, so that larger
values of z produce smoother stream functions. In princi- 3. LOCAL INSTABILITIES
ple, it is desirable to make c as smooth as possible because
the numerical method that we will use is not designed to In this section we discuss the stability of general vortex

rings using a WKB-type method developed by Lifschitzdeal with singularities. In practice, however, requiring too
much smoothness and increasing the value of z results in and Hameiri [21–24], valid for short wavelengths and small

amplitude perturbations. We explain a procedure for mak-a stream function with a very shallow maximum and a
vortex ring which is highly unstable. A particular example ing quantitative predictions of growth rates. In Section 5
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FIG. 1. Vortex ring cross section.

FIG. 2. Azimuthal cross section period.
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most unstable modes with various choices of core size and
speeds. When several vortex elements were used within
the core, their results compared well with the analytical
predictions of most unstable modes in [39].

The WKB-type predictions are based on the fact that
short wavelength instabilities can be described in terms of
the evolution of localized wave envelopes. These envelopes
move along with the particles in the fluid flow, and their
behavior is governed by a system of characteristic equa-
tions along particle trajectories. This system consists of an
eikonal equation for the wave vector and transport equa-
tion for the velocity amplitude. We determine the stability
properties of the flow by determining solutions to a system
of ordinary differential equations.

Consider the Euler equations (1) when a steady solution
with velocity us and pressure ps, in our case a vortex ring,
are perturbed by a short wavelength, small amplitude per-
turbation u, p, where u, p evolve in time. Since we are
examining the behavior of vortex rings, we can assume
that both the velocity u and pressure p vanish at infinity.
We also assume that the perturbation u begins at time 0
as a short wavelength envelope.

FIG. 3. A typical vortex ring with swirl. Spiral stream lines winding The linearized Euler equations for u, p have the form
around stream surfaces are clearly visible. Produced in The Laboratory
for Advanced Computing at The University of Illinois at Chicago by R.
Grossman, J. Leigh, and A. Lifschitz. Du

Dt
1 u ? =us 1 =p 5 0, (31)

= ? u 5 0, (32)we compute the time-dependent behavior of perturbations
to vortex rings using a numerical method to be introduced

wherein Section 4. Comparing the growth of these perturbations
with the predicted growth rates enables us to check the
validity of the analytical predictions against perturbations Du

Dt
5

­u
­t

1 us ? =u
with longer wavelengths and larger amplitudes. The stabil-
ity question is related to an evaluation of the performance
of the vortex method or other numerical methods for the is the material derivative and
time-dependent solution. Indeed, since we can only specify
the initial data approximately, the numerical solution de- u(0, x) 5 u0(x) (33)
parts from the exact solution immediately, and thus the
stability of the rings, i.e., the dynamics of solutions initially is the initial condition. The ring is called linearly stable in
close to the exact steady state, is an essential issue. the L2-norm (energy norm) if the relative kinetic energy

Although little is yet known about the stability proper- of the solution is uniformly bounded in time, i.e.,
ties of vortex rings with swirl (see Fig. 3), there has been
extensive research on instabilities in rings without swirl,
including [18, 25, 32, 35, 39, 40]. For a review, see [34]. Aseuu(t, x)u2 dx

Aseuu0(x)u2 dx
, C, (34)

Most theoretical study has been in the limit of thin cores.
Linear analysis in this limit leads to predictions of azi-
muthal instabilities, or wavy modes around the ring [32, where C is a constant independent on t and u0, otherwise

it is called unstable. This definition is essentially due to39, 40]. The wave number of the most unstable mode de-
pends on the ring speed, as well as the core distribution. Lyapunoff. Instabilities captured by this definition can be

both exponential and algebraic.Good agreement was found by Saffman [32] between such
predictions and experiments with care given to the core For the general initial data u0 it is not possible to find

the solution u(t) analytically. However, it is shown in [21]structure. Knio and Ghoniem [18] performed time-depen-
dent simulations of vortex rings without swirl, using a vor- that for the initial data in the form of a short wave-

length envelope,tex method similar to the one used here, and observed the
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dx
dt

5 us, (41)u0(x) 5 a0(x) exp SiF0(x)
«

D, (35)

dk
dt

5 2=us ? k, (42)where « is a small parameter, F0 is the initial phase func-
tion, a0(x) is the initial amplitude, and x is the position
vector, the corresponding solution can be written in the da

dt
5 2a ? =us 1 2

a ? =us ? k
uku2

k, (43)
geometrical optics form as

with the initial conditionsu 5 u1(t, x) expSiF(t, x)
«

D1 «u2(t, x) expSiF(t, x)
«

D1 O(«2),

x(0) 5 x0, k(0) 5 =F0(x0) 5 k0, a(0) 5 a0(x0). (44)
p 5 p1(t, x) expSiF(t, x)

«
D1 «p2(t, x) expSiF(t, x)

«
D1 O(«2),

We now have our evolution equations for x, k, and a. These(36)
equations consist of the trajectory equation (41) for x, the
eikonal equation (42) for k, and the transport equationwhere u1(t, x) is the first-order amplitude and F(t, x) is
(43) for a. The first equation determines the stream linethe wave vector. The initial conditions for these quantities
passing through x0. The second determines the evolutionare u1(0, x) 5 a0(x) and F(0, x) 5 F0 (x). It is shown in
of the local wave vector k along this stream line, and the[21] that the leading order term dominates the solution for
final equation determines the evolution of the amplitudea sufficiently long time, provided that « is small enough.
a, also along this stream line. The system of characteristicThus, for the purpose of the stability analysis it is sufficient
equations has a ‘‘triangular’’ structure in the followingto determine the growth rate of the first-order amplitude.
sense. The trajectory depends only on x0; the wave vectorThe eikonal and transport equation describing the dy-
depends on both x0 and k0; and finally, the amplitude de-namics of the phase F and the amplitude u1 are derived
pends on x0, k0, and a0. The incompressibility conditionin [21]. These equations have the form
(40) assumes the form

DF

Dt
5 0, (37)

a ? k 5 0. (45)

Du1

Dt
5 2u1 ? =us 1 2

u1 ? =us ? =F

u=Fu2
=F, (38) We emphasize that the scalar product a ? k is conserved

by the characteristic equations, so that these equations are
compatible with the incompressibility condition, providedwith the initial conditions
that it is satisfied at the initial moment, i.e., a0 ? k0 5 0.

The following sufficient instability condition is obtainedu1(0, x) 5 a0(x), F(0, x) 5 F0(x). (39)
by Lifschitz and Hameiri [24]: The vortex ring us, ps is
unstable in the L2-norm if for certain initial data x0, k0, a0Note that the eikonal equation for the phase F of the flow
such that a0 ? k 5 0 the corresponding amplitude a(t) growsexpresses the fact that waves in an incompressible fluid
in time without a bound. We can analyze the stability ofmust travel with the flow. The incompressibility condition
a given flow by numerically solving the system of ordinary(32) implies that =F and u1 are mutually orthogonal:
differential equations (41), (42), (43) along stream lines of
this flow.

u1 ? =F 5 0. (40) In the core of a vortex ring, stream lines are confined
to level sets of the stream function c. Thus, it is possible

Our goal here is to determine a growth rate for the to calculate numerically a growth rate for a on each level
first-order amplitude u1. To do this, we write a system of set of c. For a vortex ring characterized by a stream func-
evolution equations for x, =F, and a from the perspective tion c(y, z) and the profile functions f(c), h(c), the charac-
of a particular particle moving with the flow. This allows teristic equations for x and the physical components of k,
us to determine the instability of the flow along the path of a can be written as
that particle. We localize the problem near xp, a particular
particle location, moving with the flow. We define a(t) 5
u1(t, xp), k(t) 5 =F(t, xp) and obtain the following system dy

dt
5 2cz,

du

dt
5

f(c)
2y

,
dz
dt

5 cy, (46)
of characteristic ordinary differential equations
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Ki, i 5 1, 2, 3, two of which (say K1 and K2) are periodic
with period T, and the third one, K3 grows linearly in time
and becomes asymptotically proportional to t=c. Accord-
ingly, Eq. (47) has a two-parameter family of periodicd

dt 1
ky

ku

kz
251

cyz 2
cz

2y
2f 9cy 1

f
y

2Ï2ycyy

0
cz

2y
0

czz

Ï2y
2

f 9cz

Ï2y
2cyz

21k y

ku

kz
2, (47)

solutions, while all other solutions grow linearly in time.
Consider now the transport equation (48) for the ampli-

tude. We let F be the fundamental matrix solution of this
equation, i.e., a solution satisfying the initial conditions
F (0) 5 I. Since we have to restrict our consideration to
the incompressible case we need to study the projections
of F onto the subspace orthogonal to k, i.e., to considerd

dt 1
a y

au

az
25 (I 2 2Pk) 1

cyz 2
cz

2y
f

2y
czz

Ï2y

2f 9cy 1
f

2y
cz

2y
2

f 9cz

Ï2y

2Ï2ycyy 0 2cyz

21a y

au

az
2 the projected fundamental matrix Ff 5 F (I 2 Pk0

). The
matrix Ff depends on x0 and k0.

The asymptotic behavior of this matrix at infinity ulti-
mately determines the stability of the ring. It is shown in
[24] that the norm of Ff can grow exponentially only when
the initial data k0 is such that the corresponding wave
vector k is periodic; otherwise is can only grow algebrai-
cally. Since the periodicity of the wave vector implies the1 1

0
f

2y
0

2
f

2y
0 0

0 0 0
21a y

au

az
2, (48)

periodicity of the coefficients of Eq. (48), it is natural to
use Floquet theory in order to analyze the asymptotic be-
havior of Ff for a particular choice of x0, k0. One can
construct the corresponding monodromy matrix, deter-
mine its eigenvalue y of largest absolute value, and definewhere I is the identity matrix and Pk is the projector on k.
the local asymptotic growth rate asThe incompressibility condition (45) assumes a simple form

a yk y 1 auku 1 azkz 5 0. (49)
sy,loc(x0, k0) 5

1
T

log uvu. (52)

Without loss of generality we can choose x0 in the form
x0 5 (y0, 0, 0). It depends on x0, k0. However, it is independent of the

Since the system of characteristic equations has a trian- magnitude of k0, as can be seen from (48), and we need
gular structure, we solve them in succession. We start with to consider only unit vectors. In order to obtain the largest
Eq. (46) describing helical trajectories of the fluid particles. growth rate sy associated with the point x0, we have to
Projections of these trajectories onto the y, z-plane are consider all possible unit initial wave vectors k0 and max-
closed. The period of rotation in the y, z-plane has the form imize the value of sy,loc over them. The maximized growth

rate sy so obtained depends only on the initial point x0.
In fact, as a consequence of the asymptotic character ofT(c) 5 R ds

Ïc 2
y 1 c 2

z/2y
. (50)

our definition of sy, it depends only on the stream surface
to which the initial point x0 belongs, so that sy 5 sy(c).

For the purpose of comparing analytical and numericalWhether or not the trajectories themselves are closed de-
results, the asymptotic behavior of the fundamental matrixpends on the ratio
solution Ff at infinity is less important than its finite-time
behavior on a certain given time interval 0 # t # t*. We

Q(c) 5
1

2f
R f ds

2yÏc 2
y 1 c 2

z/2y
. (51) shall define a growth rate st*(c) for this time interval to

use rather than sy(c). As a first step, we define, for each
x0 and k0, the local finite-time growth rate by the formula

When this ratio is rational, the corresponding trajectories
are closed; otherwise they cover the stream surface ergodi-
cally. st*,loc(x0, k0) 5

1
2t*

log iF tr
f (t*)Ff(t*)i, (53)

Next we consider Eq. (47) for the wave vector. This
equation has a special structure which enables one to find
a fundamental system of solutions explicitly. The analysis where F tr

f is the transpose of Ff. The value of st*,loc(x0, k0),
maximized over all unit initial vectors k0, gives the largestwas carried out by Lifschitz and Hameiri [24]. They showed

that this equation has a fundamental system of solutions finite time growth rate s̃t*,loc(x0) associated with the point
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x0. In contrast to the previous case, we can no longer say article in [17] for a fuller treatment. Like all three-dimen-
sional vortex methods, this version is based on the Biot–that this growth rate is the same for all points on a given

stream surface. In order to obtain the growth rate st* which Savart law, which expresses velocity u in terms of the
vorticity v. This results in evolution equations for thecharacterizes stream surfaces, we average s̃t*,loc(x0) over

various initial points x0 belonging to the same stream sur- position x and the vorticity v, reducing the Euler equations
to a system of nonlinear ordinary differential equations.face (with equal weights). It is this increment st*(c) that

we compare with the one observed in the numerical experi- Several numerical studies of three-dimensional flow have
been carried out using vortex methods; further referencesments described in Section 5.

Having these theoretical preliminaries in mind, we de- include [5, 18, 26, 27, 41]. While these have contributed
to the understanding of inviscid fluid dynamics, includingscribe our numerical algorithm for studying the increments

st*. First, we use the method described in the previous some comparison with analytical predictions or experimen-
tal data, more experience is needed with the performancesection to generate a vortex ring characterized by a certain

choice of parameters (a, b, z). As a result, we obtain the of these methods in general. The availability of exact solu-
tions such as the vortex rings with swirl affords such anvalues of c on the grid points inside the computational

rectangle R. Then we extrapolate the values of c onto the opportunity. In this section, we describe the numerical
method, and then present several simulations of vortexintermediate points using the bicubic splines. In this way

we obtain analytical expressions for c and its partial deriva- rings. We also describe two modifications designed to help
reduce numerical errors. One modification is a regriddingtives everywhere in R. Using these expressions we solve

numerically Eq. (46) and determine the trajectory passing procedure which can improve accuracy at later times, as
demonstrated here, but it will not be used for measuringthrough the point x0. Next, we solve Eq. (47) and find three

linearly independent solutions Ki, i 5 1, 2, 3, of the eikonal the growth of perturbations. The second modification elim-
inates the steady solution in order to calculate perturba-equation. To study the finite-time behavior of the solutions

for one x0, we consider a two-parameter family of unit k0 tions specifically. It is used in the next section to compare
with the growth rate predictions in Section 3. At the endof the form
of the present section, we describe this approach and also
the form of the perturbation to be introduced.k0 5 cos e sin nK1(0) 1 sin e sin nK2(0) 1 cos nK3(0) (54)

The vortex method we develop here is a general one
for solutions of the Euler equations and does not dependand compute the corresponding projected fundamental so-
specifically on the structure of the rings. Fourfold symme-lution for Eq. (48). We find st*,loc(x0, k0) for various e, n
try is exploited to reduce the computational load by ausing formula (53). We scan the e, n-parameter space and
factor of 4; when initial conditions with fourfold symmetryfind the maximum finite-term growth rate s̃t*,loc(x0). Finally
are imposed the results are identical to those which dowe average this for x0 along the stream surface to obtain
not exploit symmetry. To lower the computational loadst*(c). The resulting values are reported for several rings
further, we use a fast summation algorithm [7, 15, 16] toin Section 5. We emphasize that for a fixed time t* the
reduce the operation count of the method; see below. Toshort-term growth rate can be considerably larger than the
motivate the Biot–Savart law we observe that, if the veloc-asymptotic growth rate sy.
ity u is zero at infinity, the divergence condition suggestsOnce the growth rates of these instabilities have been
the existence of a vector stream function C so thatcalculated, we can compare them with the results of time-

dependent numerical simulations. This gives us an oppor-
tunity to determine the general applicability of the approxi-

= 3 C 5 u. (55)mations made in this section. In the next section we discuss
the type and size of the initial perturbations which we
impose. If we assume that C is divergence-free and take the curl,

we obtain
4. VORTEX METHODS

The numerical solutions of the time-dependent Euler 2=2C 5 v. (56)
equations in this paper are computed using a three-dimen-
sional vortex method. Methods of this type have been used

To solve this equation, we write C in terms of the Green’sfor some time [8, 9, 19, 20]; see [17, 31] for recent surveys.
function of the Poisson equation in three dimensions,Essentially the version used here and described in this

section was introduced by Anderson and Greengard [1].
It was shown to converge to the exact solution by Beale

C(x, t) 5 E G(x 2 x9)v(x9, t) dx9, (57)[4] and Cottet [10]; see [6] for earlier theory and Hald’s
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where x9 is the location of the volume element dx9 and that the dot product reduces to a directional derivative; we
replace this derivative with a centered difference quotient.
While there are other possible evolution equations for the

G(x) 5
1

4fr
, r 5 uxu (58) vorticity, the one presented here is the most conceptually

simple, is the simplest to implement, and seems to produce
the best numerical results (see [5] for a discussion).Finally, we take the curl of this equation to obtain the

One of the difficulties in using the method describedwell-known Biot–Savart law,
above arises in the quadrature of the singular integral for
the velocity field. Notice that the velocity is determinedu(x, t) 5 E K(x 2 x9, t)v(x9, t) dx9 (59)
by what is essentially an inverse square law which implies
the effects of the discretization will be pronounced near a

K(x) 5 2
x

4fr3 3. particle location. To deal with this problem it is common
to introduce vortex blobs, replacing point vortices with
smooth overlapping regions of vorticity. A smooth versionThis provides an evolution equation for the position of
of the kernel K in (59) is introduced as Kd 5 K p fd, whereparticles in the flow, when the vorticity is known. The
fd 5 d 23f(x/d), f is a shape function of total weight onesecond evolution equation is the vorticity transport equa-
and d is the vortex blob size. This size should be largetion, the curl of the first Euler equation (1), which can be
enough to allow nearby vortex blobs to overlap but smallwritten in the form
enough to avoid smearing the results. Since Eq. (62) pro-
duces good results for distant points without modification,
it will also be desirable to choose a shape function which

Dv

Dt
5 v ? =u, (60)

does not modify K for large values of r. There are several
criteria for choosing a shape function f which is as nondis-

where Dv/Dt 5 ­v/­t 1 u ? =v is the material derivative. ruptive as possible but still provides the smoothing re-
We now use these evolution equations to produce a quired. These criteria are described in more detail in [6];

numerical method. The integral in the Biot–Savart law is however, a short discussion is presented here.
over all space, but for the case of the vortex ring the integral Since Kd 5 K p fd and K 5 = 3 G, where G is the
is only performed over the vortex core, the bounded set Green’s function for 2=2, we know that Kd 5 = 3 Gd,where the vorticity v is nonzero. To integrate numerically where Gd 5 G p fd. This along with Eq. (58) implies
we introduce a square grid of size h covering the vortex
core. Grid points correspond to initial locations of repre-
sentative particles, with a known initial vorticity. In a La- Kd (x) 5

­Gd (r)
­r

x
r

3, (64)
grangian scheme, we then follow these elements as they
move along particle paths. Particle positions and vorticities

where r 5 uxu. The fact that G is the Green’s function forwill be labeled as xj (t) and vj (t), respectively. We approxi-
2=2 also implies thatmate the velocity field produced by the Biot–Savart law as

2=2Gd 5 fd . (65)
uh(x, t) 5 O

j
Kd (x 2 xj)vj h3, (61)

To determine f 5 f1 we simplify the problem by assum-
ing thatwhere Kd is a smooth version of the kernel of (59), de-

scribed below. We use this velocity field to provide an
evolution equation for the position xi of each particle K1(x) 5 2

f(r)x
4fr2 3, (66)

dxi

dt
5 uh(xi, t) 5 O

j
Kd (xi 2 xj)vj h3. (62) where f is to be determined. If this is true then

Since the particle xi is moving with the flow, its vorticity ­G1(r)
­r

5 2
f(r)
4fr2 . (67)

evolution can be approximated by

We use this to show thatdvi

dt
5 vi ? =uh

i (63)

f 5 f1 5 2=2G1 5 2
1
r2

­

­r Sr2 ­G1

­r D5
f 9(r)
4fr2 . (68)

using (60). The derivative =uh
i can be obtained by observing



20 LIFSCHITZ, SUTERS, AND BEALE

FIG. 4. The shape function: f and f.

The conditions we impose on f and f ensure that f is dxi

dt
5 uh(xi , t) 5 O

j
Kd(xi 2 xj)wjh3

(70)
smooth, has weight one, and is fourth-order accurate (see
[4–6] for a discussion of order). We also require that f
have compact support so we can use the fast summation dvi

dt
5 vi ? =uh

ialgorithm described later. Thus, we require that f 9(r) be
a continuous function of r2, f(r) 5 O(r3) as r R 0, f(r) 5

where Kd 5 K p fd , fd 5 d 23 f(x/d), and f is given by1 for r $ 1, and e f(r) r4 dr 5 0. Assuming that f is a
Eq. (69). This system can be discretized in time by a varietythird-degree polynomial in r2 for r # 1 and zero for r $
of ordinary differential equation solvers. Here the classical1, we see that f(r) 5 O(r3) as r R 0. We now have four
fourth-order Runge–Kutta method was chosen since itscoefficients to choose and only three additional require-
stability region includes a large portion of the imaginaryments to meet. This allows one degree of freedom with
axis, and because it has been found to work well in practicewhich to choose a function with a small amplitude and
with fairly large time steps.derivative. One such function is

Without further modification, this vortex method is com-
putationally quite expensive. In Eq. (70) we see that the
vorticity of every particle effects the velocity of every otherf 5

1
4f 5dQs(23465r6 1 8505r4 2 6615r2 1 1575), r # 1

0, r $ 1. particle, resulting in order n2 terms, where n is the number
of representative particles. Since the problem is fully three-
dimensional the number of grid points can become quite(69)
large, even at modest grid sizes. It is desirable to reduce
the operation count of the method using a fast summationThis is the shape function which will be used for the dura-

tion of this paper. This f and its corresponding f are plotted algorithm. Because of the inverse square character of parti-
cle interactions it is reasonable to use a multipole expan-in Fig. 4. The moment condition for fourth-order accuracy

requires a change of sign in f. Further cancellation would sion to approximate the influences of a group of distant
particles. Methods of this type can reduce the order ofbe undesirable, and this choice of f has a reasonable com-

bination of the needed properties. vortex methods from n2 to n. Such an algorithm has been
developed by Greengard and Rokhlin [16, 15]. However,Once the vortex blobs with the shape function are intro-

duced, the evolution of the flow reduces to a specific system the complexity of this algorithm seems to make it most
useful for a very large number of particles. In this paperof ordinary differential equations
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we use a simplification developed and programmed by 20, b 5 10, and z 5 1.5. It is intermediate with respect to
swirl and is much more stable. As noted in Section 2, muchButtke; see [7] for a discussion. This method reduces the

computational count from order n2 to order n3/2 and is of this stability originates in the smaller value of z. While
larger values of z increase the smoothness of the streampractical for a moderate number of particles. The algorithm

breaks the region under consideration into a number of function c at the boundary of the vortex core, they also
increase its complexity and produce less stable rings. Thelarge boxes. To find the sum of all influences on a given

particle, the influences from particles in nearby boxes are ring is propagating along the z-axis with velocity 0.121 and
has a roughly circular cross section with 0.67 , r , 2.03calculated individually, and the effects of particles in boxes

farther away are represented by multipole expansions. The and uzu , 0.82. The grid size is h 5 0.1, the vortex blob
size is d 5 0.37, and the time step is Dt 5 0.2. Again,velocities calculated using this method can be made to

agree with arbitrary accuracy to those calculated using about 5000 particles are used. The results, shown in Fig.
6, demonstrate the stability which can be obtained fordirect summation.

We now present the results of time-dependent calcula- vortex rings with swirl.
The third ring is produced with a 5 50, b 5 0, andtions, using the method just described, for three unper-

turbed vortex rings. These results illustrate the behavior z 5 1.5 and is included here to illustrate the degree of
stability obtainable with Beltrami rings. It propagatesof the rings and the performance of the method. For

comparison, some calculations have been done using a along the z-axis with velocity 0.119 and has a cross
section with 0.88 , r , 1.93 and uzu , 0.60. There isregridding procedure, described below. Fourfold symme-

try and fast summation are used in all cases. The solution no intentional initial perturbation. The vortex blob size
is d 5 0.32 and the grid size is h 5 0.075 resulting inis initialized with a numerically exact ring, found from

the method described in Section 2. No intentional pertur- n 5 8229 initial representative particles in Af of the vortex
ring. The calculation of the third ring used regridding.bation is introduced. To evaluate these results, the veloc-

ity us(xi) of the steady vortex ring is calculated, using The results, along with those for ring 2, are shown in
Fig. 6.the computed stream function c and Eq. (6), at 100

points xi chosen on each of three rectangular cross One source of errors, due to the Lagrangian nature of
the method, is that the sum (61) used in the approximationsections of the vortex core. At every time step, the time-

dependent velocity u(xi) is calculated at these points to the Biot–Savart law (59) depends on the varying particle
locations. This problem is partially solved using vortexusing the first equation of (70). These velocities are then

compared to find a relative L2 velocity error blobs. A regridding procedure can be used to further en-
sure an even distribution of vorticity. At times chosen by
some criterion, the vorticity is redistributed to new parti-
cles which start on a square grid. The new vorticities canEu 5 Soi uu(xi) 2 us(xi)u2

oi uus(xi)u2 D1/2

. (71)
be calculated from the old values using the formula

Our first example is a ring which was used in a similar v*(x) P O
j

vjfd(ux 2 xju). (72)
calculation by Beale, Eydeland, and Turkington [5]. This
ring was under resolved in the earlier work. Here it is
better resolved because of the improvements described in In the calculations just discussed, the decision to regrid

was based on a calculation of the vorticity at the particleSection 2, and we show that it is particularly unstable. Our
other two examples are much more stable. The first vortex locations, found from (72). These values were compared

with the vi. Regridding was carried out if the relative L2ring, Ring 1 in Fig. 5, is produced using the method of
Section 2 with a 5 512, b 5 0, and z 5 3. It is a Beltrami error exceeded 180%. For the first ring, this occurred five

times, since the ring was quite unstable, while for the sec-ring propagating along the z-axis with velocity 0.144. Its
cross section is roughly circular with 0.86 , r , 1.88 and ond it only occurred twice. While regridding has advan-

tages which are evident in these results, it smears the an-uzu , 0.57. Here we return to the usual cylindrical coordi-
nates (r, u, z). The grid size is h 5 0.075, the vortex blob swer, if done often, and increases the computational region.

Thus the number of particles, and the computational effort,size is d 5 0.32, and the time step is Dt 5 0.2. Approximately
5000 particles are used in Af of the ring. When regridding increase in time. For the instability calculations in the next

section, we do not use regridding but another modifica-was allowed, the error jumped each time the regridding
occurred, but the overall growth rate of the velocity error tion instead.

Since we are interested in the evolution of perturbations,was reduced. This seems to indicate that the regridding
improved the long time behavior of the numerical simu- we introduce a modification in the numerical method which

allows us to eliminate the steady part of the problem.lation.
The second ring, ring 2 in Fig. 6, is produced with a 5 We impose an initial velocity perturbation u0(x) and its
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FIG. 5. Relative velocity error for ring 1.

associated vorticity perturbation v0(x) on the velocity and ­(vs 1 v)
­t

1(us 1 u) ? [=(vs 1 v) 5 (vs 1 v) ? =(us 1 u),
(73)

vorticity fields, us(x) and vs(x), of a steady vortex ring.
We want to find u(x, t) so that u(x, 0) 5 u0(x) and

(us 1 u) 5 E K(x 2 x9)(vs(x9, t) 1 v(x9, t)) dx9.us(x) 1 u(x, t) is a solution to the Euler equations (1). The
corresponding vorticity perturbation is v(x, t) 5 = 3 u.
Since this process does not depend on any vortex ring Since us also satisfies the Euler equations, this simplifies to
structure, it could be used to model the behavior of pertur-
bations of any steady solution of the Euler equations. Dv

Dt
5 (vs 1 v) ? =u 1 v ? =us 2 u ? =vs ,

(74)If us 1 u satisfies the Euler equations and vs 1 v 5
= 3 (us 1 u), then vs 1 v and us 1 u must satisfy (60)

u(x, t) 5 E K(x 2 x9)v(x9, t) dx9,and (59), leading to

FIG. 6. Relative velocity error for rings 2 and 3.



INSTABILITY IN VORTEX RINGS WITH SWIRL 23

where Dv/Dt 5 (us 1 u) ? =v is the material derivative. perturbation, u0, which we specify. We introduce a wave
function in u with wave number 20, a multiple of fourWe then discretize the problem to a system of evolution

equations similar to the unmodified method, which allows us to exploit fourfold symmetry. If we choose
the r̂ direction, the resulting velocity perturbation has
the formdxi

dt
5 us(xi) 1 O

j
Kd(xi 2 xj)vjh3,

u0 5 G(c) cos(20 u)r̂. (77)
dvi

dt
5 (vs(xi) 1 vi) ? =uh(xi , t) (75)

Taking the curl, we arrive at the initial vorticity pertur-
bation1 vi ? =us(xi) 2 uh(xi , t) ? =vs(xi),

which we solve using the fourth-order Runge–Kutta v0 5
­

­z
(G(c) cos(20 u))û 2

1
r

­

­u
(G(c) cos(20 u))ẑ

(78)method. We obtain the steady velocity us and vorticity vs

to any accuracy desired using Eq. (6) and a differencing
5

dG(c)
dc

­c

­z
cos(20 u)û 1

20
r

G(c) sin(20 u)ẑ,scheme to approximate derivatives of the stream function
c. The gradients in (75) can be interpreted as directional
derivatives and are also approximated using difference

where all of the derivatives in this equation are approxi-
quotients.

mated as difference quotients in c.
We must now introduce an initial perturbation

u(x, 0) 5 u0(x) in velocity and v(x, 0) 5 v0(x) 5 = 3
5. TIME-DEPENDENT VORTEX RING SIMULATIONSu0(x) in vorticity. In principle we can vary the wavelength,

shape, direction, and location of our initial perturbations. In this section we compare the results of computations
We will not attempt a comprehensive study, but instead using the modified vortex method of Section 4 with the
we focus on the behavior of specific small amplitude pertur- the instability predictions of Section 3. We study the evolu-
bations which can be compared with the instability predic- tion of perturbations to a two-parameter family of vortex
tions of Section 3. The perturbation we describe now is rings, which are calculated using the procedure described
used in Section 5 to initialize the calculations of time- in Section 2. Maximum growth rates for these specific rings,
dependent solutions for various perturbed rings. depending on the location in the ring, are found using

The vortex core is the region where the stream function the WKB analysis explained in Section 3. Time-dependent
c is greater than zero, and c roughly measures the depth perturbations to the Euler equations are then computed
inside the core. Thus it is reasonable to use a cutoff function for these rings by the modified vortex method, using the
of c to limit our initial perturbation to the immediate initial perturbation given in Section 4. The rates of growth
neighborhood of the vortex core. Here we use the cutoff for these perturbations are compared with the analytical
function predictions, and the results are interpreted. Generally, the

computed rates are somewhat lower than the predicted
G(c) 5

TABLE I5
10 exp(28), c . cc

10 exp S 20.0008
0.012 2 (cc 2 c)2D , cc $ c . (cc 2 0.01)

0, c # (cc 2 0.01),

Observed and Predicted Growth Rates with a 5 50 and b 5 20

Growth rate
Level number Value of

(76) i ci Period T Predicted Observed

1 0.0103 21.6 0.338 0.148where the cutoff value, cc, is one tenth of the maximum
2 0.0207 18.2 0.370 0.153value of c. This function confines the initial perturbation
3 0.0310 15.6 0.387 0.155

to the region, where c . (cc 2 0.01). A typical ring in this 4 0.0414 13.7 0.396 0.151
study has a stream function which varies, inside the vortex 5 0.0517 12.2 0.396 0.151

6 0.0620 10.9 0.384 0.151core, from 0 to approximately 0.1. The perturbation has
7 0.0724 9.94 0.351 0.147an amplitude of 10 exp(28) P 0.00335, approximately 1%
8 0.0827 9.09 0.292 0.137of the maximum velocity for the rings in this paper.
9 0.0931 8.37 0.199 0.119

The solution of the system (75) is initialized by a vorticity 10 0.1034 7.76 0.111 0.076
perturbation v0, determined as the curl of an initial velocity
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FIG. 7. Perturbation growth of the ring with a 5 50 and b 5 20.

maximum, and the dependence on location and ring pa- are carried along with the flow and their velocities and
positions are computed, they are not used in the vortexrameters is consistent with the predictions.

In order to compare the two kinds of results, we need method calculation.
We need a convenient coordinate system in which toto compute localized growth rates in the vortex method

simulation which are compatible with those predicted by identify these tracking particles. In a vortex ring the level
sets of c form a family of nested tori, with the inner mostthe analysis for different regions of the vortex ring. We

examine the perturbation evolution near a level curve of being the circle on which c 5 cmax, the maximum value
of c. This circle is given in cylindrical coordinates by r 5the stream function c by identifying representative parti-

cles located near the curve and following their evolution r0, z 5 z0, and 0 # u , 2f. In our new coordinate system,
we leave the u unchanged and replace r and z with c andin time. Since neither the initial grid points or the particle

locations in the vortex method are convenient for this f, where 0 , c # cmax, and 0 # f , 2f identifies the
angle in the poloidal cross section of the ring, centeredpurpose, we introduce special tracking particles which are

located near the level curve. While these tracking particles around the location of cmax. This coordinate system
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FIG. 8. Observed and predicted growth rates with a 5 50 and b 5 20.

uniquely identifies the points of the vortex core as long as roughly the period of a particle near the center of the ring
moving in the poloidal cross section. The time step isthe stream function has only one maximum, as it does for

the rings in this study. The tracking particles are initially Dt 5 0.2; a smaller time step was found to have very little
effect. The vortex blob size in (70) is 1.17Ïh, where h isplaced along the level sets of c at the points (ci, uj, fk)

given by the grid size. Fast summation and fourfold symmetry are
used in all calculations. The initial perturbation is that
discussed at the end of Section 4. An exponential rate of

ci 5
icmax

10
, uj 5

(f/2)(10 2 j)
10

, fk 5
2f(10 2 k)

10
, (79) growth for the velocity deviation (80) in each stream sur-

face is derived from its change during the elapsed time.
These are presented in the figures and tables as ‘‘Ob-where 1 # i, j, k # 10 are integers. Because of fourfold
served’’ growth rates and compared with the ‘‘Predicted’’symmetry, we identify 1000 tracking particles in the quarter
growth rates from the WKB theory. As explained in Sec-of the ring where 0 # u , f/2. In each poloidal cross
tion 3, the predicted rate st p (c) is found by computingsection we move the 10 tracking particles located at c 5
the local rate of (53), maximizing over k0, and then averag-cmax out slightly to c 5 0.99 cmax. The particles are rela-
ing over the stream surface.beled, with those for each level in c listed in some order,

The vortex ring common to both groups has the parame-so that xi
j is the jth particle associated with ci. A relative

ters a 5 50, b 5 20. This ring has a stream function withvelocity deviation
maximum value cmax 5 0.103 and a propagation velocity
0.0671. The periods of rotation T (50) of representative

E i
u 5 S ojuui

ju2

ojuus(xi
j) 1 ui

ju2
D1/2

(80) particles on various stream surfaces are given in Table I.
The grid size is h 5 0.08 which results in 4270 grid points
in a quarter of the ring. The perturbation growth (80) as

can now be calculated for the particles associated with ci,
where ui

j is the velocity perturbation and us(xi
j) is the exact

steady velocity at the point xi
j.

TABLE IIWe now introduce the two-parameter family of vortex
rings for which we will calculate the deviation as just de- Information on a Family Varing in a
scribed. This family arises from the parameters a and b in

a h n Prop. speed cmax Tminthe structure functions (17). We examine separately the
rings in the one-parameter family where a 5 20, 50, 80

20 0.10 3976 0.0637 0.101 14.0while b 5 20 is fixed, and the family b 5 0, 20, 40 while
50 0.08 4270 0.0671 0.103 7.76

a 5 50. For all of these rings the parameter z 5 1.5. The 80 0.08 2955 0.0702 0.104 5.35
perturbed solutions are calculated until t 5 9.8. This is
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TABLE III

Growth Rates for a Family Varying in a

a 5 20 a 5 50 a 5 80

Level Predicted Observed Predicted Observed Predicted Observed

1 0.180 0.0298 0.338 0.148 0.470 0.276
2 0.199 0.0287 0.370 0.153 0.522 0.280
3 0.211 0.0228 0.387 0.155 0.599 0.281
4 0.218 0.0274 0.396 0.151 0.572 0.284
5 0.219 0.0315 0.396 0.151 0.558 0.290
6 0.212 0.0344 0.384 0.151 0.530 0.297
7 0.196 0.0377 0.351 0.147 0.495 0.302
8 0.176 0.0380 0.292 0.137 0.445 0.298
9 0.141 0.0288 0.199 0.119 0.350 0.280

10 0.103 0.0158 0.111 0.076 0.169 0.249

a function of time is plotted in Fig. 7; notice that for clarity them the ring would not be a steady structure in time.
Notice, in Fig. 8, that the predicted growth rates vary morealternating levels are plotted on different graphs. The lev-

els are indexed by i, where the stream function has the than the observed growth rates. It seems reasonable that
nonlocal effects force perturbations in different locationsvalue ci. Observed and predicted growth rates between

t 5 0 and t 5 9.8 are listed in Table I and graphed in Fig. 8. to grow at similar rates. It is, in fact, surprising that the
observed and predicted growth rates match as closely asIn interpreting the growth rates, it is important to re-

member that the WKB method predicts a maximum they do here.
We now examine the one-parameter family where a 5growth rate over all initial perturbations while the vortex

method calculates the growth rate for one perturbation 20, 50, 80, and b 5 20. The calculations use different mesh
sizes, but all have approximately 3000–4000 representativein particular. The WKB-type method also describes the

growth of short wavelength local instabilities. Longer particles in Af of the vortex ring. Specific information about
these rings is contained in Table II which lists mesh sizewavelength perturbations and nonlocal effects may play a

large role in the evolution of a vortex ring. Nonlocal effects, h, the number of representative particles in Af of the ring
n, the propagation speed, the maximum value of the streamwhich can be clearly seen in the Biot–Savart law (59), are

particularly important as a stabilizing influence, for without function cmax, and the minimum period of rotation Tmin.

FIG. 9. Observed and predicted growth rates with a 5 20 and b 5 20.
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FIG. 10. Observed and predicted growth rates with a 5 80 and b 5 20.

The average and predicted growth rates are given in Table relative velocity deviations for each ring are included in
Table V, along with the predicted growth rates. The resultsIII. We have already seen the results for the ring where

a 5 50 and the results for the rings with a 5 20 and a 5 for the ring with b 5 20 were shown previously; the rest
are graphed in Figs. 11 and 12.80 are plotted in Figs. 9 and 10.

Notice that the predicted maximum growth rate is gener- While the growth rates, both observed and predicted,
of these three rings vary much less across the family thanally two to three times larger than the observed growth

rate for the two higher values of a; for a 5 20, the observed previously, the predicted growth rates are still on the order
of twice those observed. As before, the observed growthrate is much lower. The stabilizing influence of nonlocal

effects may help to explain the smaller variation of ob- rates vary less across the level sets of c than the predicted
growth rates. Here, however, the predicted growth ratesserved growth rates with respect to position. Even though

the growth rate prediction is made for short wavelength do not always predict the relative stability. In particular,
the ring with a 5 50 and b 5 20 is predicted to havelocal instabilities, it does seem to be a relatively good

predictor of the overall stability of a vortex ring. Those intermediate growth rates while some of its observed
growth rates are lower than the other two. The rings inwith higher predicted growth rates have higher observed

growth rates. Finally, notice that the rings become less this family have such similar growth rates, however, that
this is not surprising. In fact, increasing b does not seemstable as a increases.

Now we observe the time-dependent behavior of a one- to have a definitive influence on stability.
parameter family of rings, where a 5 50 and b 5 0, 20,
40. The case b 5 0 is a ring with the Beltrami property,

6. CONCLUSIONSdescribed in Section 2. They are computed with different
mesh sizes but all contain approximately 3000–4000 repre-

Axisymmetric rings with swirl have been computed assentative particles in Af of the vortex ring. Specific informa-
exact, steady solutions of the Euler equations of inviscidtion about each vortex ring is contained in Table IV. The
fluid flow, using a variational method. Quantitative predic-
tions were made for the maximum growth rate of linear-

TABLE IV ized, short-wave instabilities in these rings, using a geomet-
ric optics or WKB approach. A modified three-dimensionalInformation on a Family Varying in b
vortex method was developed to compute time-dependent

b h n Prop. speed cmax Tmin perturbations in the exact rings for comparison with these
predictions. Time-dependent calculations of unperturbed

0 0.09 4315 0.0543 0.102 11.3 rings stayed close to the initial state for a moderate amount
20 0.08 4270 0.0671 0.103 7.76

of time, at least for rings with certain choices of parameters.40 0.08 3289 0.0752 0.104 5.92
These calculations establish that the rings chosen are fairly
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TABLE V

Growth Rates for a Family Varying in b

b 5 0 b 5 20 b 5 40

Level Predicted Observed Predicted Observed Predicted Observed

1 0.264 0.141 0.338 0.148 0.394 0.150
2 0.291 0.142 0.370 0.153 0.425 0.153
3 0.308 0.157 0.387 0.155 0.437 0.156
4 0.317 0.154 0.396 0.151 0.438 0.158
5 0.319 0.166 0.396 0.151 0.420 0.163
6 0.314 0.160 0.384 0.151 0.387 0.168
7 0.302 0.150 0.351 0.147 0.347 0.167
8 0.276 0.132 0.292 0.137 0.308 0.156
9 0.225 0.115 0.199 0.119 0.255 0.134

10 0.139 0.102 0.111 0.076 0.130 0.097

stable and that they are represented with good accuracy observed can be explained by noting that the asymptotic
analysis is predicting the maximum possible growth rate,by the vortex method. Finally, for each of five different

exact rings, a general disturbance was introduced and al- while the vortex method calculation produces a rate for a
particular disturbance not chosen to represent the maxi-lowed to evolve in time, using the modified vortex method.

The growth rate was found, as a function of position in mum. It is also important to note that the WKB-type predic-
tion excludes nonlocal interactions and assumes smallthe ring, and compared with the maximum rate predicted

by the WKB analysis. The observed rate of growth was wavelength perturbations, whereas the vortex method cal-
culation includes the full effects but introduces a discretiza-about As to Ad of the predicted maximum, with the exception

of the case a 5 20, b 5 20. The dependence on location tion error. Considering these limitations, the growth rate
predictions seem to agree surprisingly well with those ob-and on the ring parameters was generally consistent with

the predictions, although there was less spatial variation served. This serves to increase our confidence in the perfor-
mance of the modified vortex method as well as the asymp-in the observed rates than in the predicted ones.

These results indicate that the WKB analysis has done a totic analysis. It also provides new information about the
stability properties of the vortex rings with swirl, which wereasonably good job of predicting the growth of instabilities.

The fact that thepredicted growthrates are larger thanthose regard as a prototype for exact structures in inviscid flow.

FIG. 11. Observed and predicted growth rates with a 5 50 and b 5 0.
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FIG. 12. Observed and predicted growth rates with a 5 50 and b 5 40.
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